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Abstract

Results of a geometrically nonlinear finite element
parametric study to determine curvature correction fac-
tors or “bulging factors” that account for increased
crack-tip stresses due to curvature for longitudinal and
circumferential cracks in unstiffened cylindrical shells
subjected to combined loads are presented.  Nondimen-
sional parameters varied in the study include the shell
curvature parameter, 

 

λ

 

, which is a function of the shell
radius, the shell wall thickness, and the crack length; a
pressure loading parameter, 

 

η

 

, which is a function of the
shell geometry, material properties and the applied inter-
nal pressure; and a biaxial loading parameter, 

 

χ

 

, which is
the ratio of the farfield axial stress to the farfield circum-
ferential stress.  The major results are presented in the
form of contour plots of the bulging factor as a function
of these three nondimensional parameters.  These plots
identify the ranges of the shell curvature and loading pa-
rameters for which the effects of geometric nonlinearity
are significant, and show the effect of the biaxial loads
on the value of the bulging factor.  Simple empirical ex-
pressions for the bulging factor are then derived from the
numerical results and are shown to predict accurately the
nonlinear response of shells with longitudinal and cir-
cumferential cracks.

Introduction

The fail-safe design philosophy applied to transport
aircraft fuselage structure requires that these structures
retain adequate structural integrity in the presence of dis-
crete source damage or fatigue cracks.  Two types of
damage most frequently associated with the structural in-
tegrity of fuselage structures are longitudinal cracks sub-
jected to the circumferential stresses resulting from the
internal pressure loads, and circumferential cracks sub-
jected to stresses resulting from the bending and shearing
of the fuselage induced by normal flight loads.  The anal-
ysis of these fuselage cracks is complex due to the geo-
metric coupling of bending and stretching deformations

in a shell structure, the geometrically nonlinear stiffening
effect of membrane tensile stresses that are aligned with
the crack faces, and the interaction of the crack with the
surrounding structure (frames, stiffeners, and tear
straps).  To make the residual strength analyses of fuse-
lage structure tractable in the design phase, current resid-
ual strength analyses and damage tolerant design
practice rely primarily on geometrically linear analyses
and fracture analyses based on linear elastic fracture me-
chanics.  Linear elastic fracture mechanics suggests that
the crack-tip stress intensity factor is an indicator of the
likelihood of fracture.  The conventional engineering ap-
proach used in design practice is to predict the crack-tip
stress intensity factors for a crack in a fuselage shell by
applying a so-called “bulging factor,” in combination
with additional design factors that account for stiffener
elements, to the stress intensity factor for a flat plate sub-
jected to similar loading conditions.  

The bulging factor accounts for the fundamental
difference in behavior of a crack in a curved shell com-
pared to the behavior of a crack in a flat plate.  In a
cracked shell, the local region around the crack deforms
out-of-plane as a result of the curvature induced coupling
between the membrane and bending displacements, and
the internal pressure, where, in a plate, the crack deforms
in plane.  These out-of-plane displacements in the neigh-
borhood of a crack in a shell increase the crack opening
and crack-tip stress intensity compared to those of a
cracked plate with the same crack geometry.  The bulg-
ing factor amplifies the flat-plate stress intensity factor
and is defined as the ratio of the stress intensity factor in
a cracked shell to the stress intensity factor in a cracked
plate.

 Many studies have been conducted to characterize
bulging cracks, and both analytical

 

1-8

 

 and empirical
formulas

 

9-14

 

 for the bulging factor have been developed.
Analytical expressions for the bulging factor in shells
were first developed by Folias using a formulation based
on linear shallow shell theory.

 

1-4

 

  Folias’ expressions de-
pend on the shell curvature parameter, 

 

λ

 

, where, for an
isotropic shell, 

 

λ

 

 is defined as:

(1)λ a

Rt
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and:

Folias’ original solutions are only valid for very small
values of 

 

λ

 

.  The range of application of his solutions
was later extended

 

5-8

 

 to larger values of 

 

λ

 

 (

 

λ

 

 = 

 

8

 

 for a
longitudinal crack, 

 

λ

 

 = 

 

10 

 

for a circumferential crack),
by solving numerically the integral equations associated
with the problem.

The analytical bulging factors tend to overestimate
the physical bulging effect, unless the cracks are very
short, or the applied load is very small, so that geometric
nonlinear effects are not significant.  The error intro-
duced by the linearization of the shell equations has been
explained by Riks, et al.,

 

15

 

 and is a result of the tensile
membrane stresses that develop along the crack edges as
the crack bulges.  These tensile stresses increase the re-
sistance to additional crack bulging and crack opening.
This nonlinear coupling between the bulging deforma-
tions and the membrane tensile stresses is not predicted
by a linear analysis.  Recently, some empirical formulas,
which attempt to account for the nonlinear character of
the bulging response, have been developed for determin-
ing bulging factors in shells with longitudinal cracks.

 

11-

14

 

  These empirical formulas were developed for specific
materials, geometries and loading conditions, and thus,
the formulas are valid for limited applications.  

A more general investigation of the geometrically
nonlinear response of pressurized cylindrical shells with
longitudinal cracks was conducted by Budiman and
Lagace.

 

16,17

 

 Using the Donnell-Mushtari-Vlasov non-
linear shallow shell theory,

 

18

 

 Budiman and Lagace pos-
tulated that the nonlinear response is dependent on two
nondimensional parameters: the shell curvature parame-
ter, 

 

λ, 

 

which appears in the linear theory, and is defined
in Eq. (1); and a loading parameter, 

 

η

 

, which depends on
the applied internal pressure, material properties, and
shell geometry.  From the nondimensional form of the
governing equations, Budiman and Lagace

 

16,17

 

 defined

 

η

 

 as

(2)

where:

and the remaining variables are as defined in Eq. (1).
Budiman and Lagace stated that 

 

η

 

 is a measure of the
“driving force” of the nonlinearity.  Budiman and

Lagace assessed the applicability of these parameters to
the nonlinear response of pressurized cylindrical shells
with longitudinal cracks by conducting nonlinear analy-
ses of different cylindrical configurations using the
STAGS finite element code.

 

19

 

  The results of the analy-
ses showed that the two parameters are able to charac-
terize the response of cylindrical shells with longitudinal
cracks, subjected to internal pressure loading.
Budiman

 

17

 

 also suggested, after obtaining the same two
parameters from the nondimensional form of Sanders’
nonlinear shell equations, that 

 

λ

 

 and 

 

η

 

 can be used to
characterize the response of cylindrical shells when the
crack is oriented in the circumferential direction,
although Budiman did not confirm this hypothesis.
Results of recent geometrically nonlinear finite element
analyses presented by the present authors

 

20

 

 demon-
strated that 

 

λ

 

 and 

 

η 

 

can also be used to characterize the
geometrically nonlinear response of any pressurized
cylindrical shell with a circumferential crack.  Further-
more, the results presented in Ref. 20 show that the
magnitude of the bulging factor for both longitudinal
and circumferential cracks is affected by the shell geom-
etry and the shell loading, and that for many shell geom-
etries and load magnitudes the bulging factor is strongly
influenced by the geometrically nonlinear response of a
pressurized thin shell.  The local response of the shell in
the neighborhood of the crack is dominated by linear
bending or nonlinear membrane response characteristics
depending on the values of the shell radius, the shell
thickness, the crack length, and the magnitude of the
applied internal pressure load.  When the internal pres-
sure load is small, the local behavior of the shell is dom-
inated by the linear bending response, and the bulging
factor is a function of the shell curvature parameter, 

 

λ

 

,
only.  For higher values of the internal pressure load, the
response is dominated by membrane tension effects
which reduce the bulging factor with increasing

 

 η

 

.  It
was also shown in Ref. 20 that, in the nonlinear region
of the response, the bulging factor can be uniquely
related to the ratio of 

 

λ/η

 

, where the loading parameter,

 

η

 

, is defined as:

(3)

where  is the farfield circumferential stress.
The studies described in the previous paragraph,

and the majority of the studies presented in the literature
are for the case of a shell with a crack subjected to inter-
nal pressure loads and the axial load associated with the
bulkhead loads, without consideration of the effect of ad-
ditional axial mechanical loads.  Recent studies have
shown, however, that for shells with longitudinal cracks,
the ratio of the farfield axial stress to the farfield circum-
ferential stress, or biaxial loading parameter
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, can have a significant effect on the bulging
deformations and the bulging factors.

 

11,21

 

  Consequent-
ly, formulas developed for the loading condition of inter-
nal pressure only, , may lead to unsafe designs if
their predictions are non-conservative, or conversely, to
excessive structural weight if they are overly conserva-
tive. 

The present paper has several objectives.  The first
objective is to present the results of a comprehensive
geometrically nonlinear numerical parametric study of
the response of aluminum shells with centrally located
longitudinal and circumferential cracks subjected to
combined internal pressure and mechanical loads.  Geo-
metric parameters varied in the parametric study include
the shell radius, the shell wall thickness, the crack length,
and the crack orientation.  The second objective is to as-
sess the dependence of the nonlinear response of shells
with longitudinal and circumferential cracks on the geo-
metric parameter,  

 

λ,

 

 the pressure loading parameter, 

 

η,

 

and the biaxial loading parameter, 

 

χ

 

.  The final objective
is to develop simple expressions for determining the
bulging factors, that can be used easily in a design envi-
ronment, for longitudinal and circumferential cracks in
cylindrical shells subjected to combined internal pres-
sure and mechanical loads.

Strain-Energy Release Rate and Bulging Factor

Linear elasticity theory predicts a stress singularity
at the tips of cracks, and the strength of the crack-tip
stress field singularity is represented by the stress inten-
sity factor,  

 

  

 

For a flat plate with a central crack sub-
jected to uniaxial tension perpendicular to the crack
direction, the stress intensity factor for the plate,  is
defined as

(4)

where  is the in-plane remote stress acting perpendic-
ular to the crack line, and  is a function to account
for finite width effects.  For a flat plate, or in cases when
the linear shell equations apply, the crack-tip stress field
and the stress intensity factor are proportional to the
loads, and the stress intensity factors can be related to
the strain-energy release rate.

 

22

 

  

 

For a flat plate with a
central crack subjected to uniaxial tension perpendicular
to the crack direction, the relationship between the stress
intensity factor and the strain-energy release rate, 

 

G

 

, has
the form:

(5)

where  is Young’s modulus.  When geometrically
nonlinear effects are present, the stress field, and hence,
the stress intensity factor, are not linear functions of the
applied load, and the stress intensity factor cannot be

defined as in Eq. (4).  To address this problem, an engi-
neering approach is employed and the nonlinear stress
intensity factor for the shell,  is defined on the basis
of Eq. (5).

 

23

 

  For the present study, the stress intensity
factor  is calculated from:

(6)

For the symmetric loading conditions considered in the
present paper,  defined by Eq. (6) is the total stress
intensity factor, and is a combination of the symmetric
membrane and bending stress intensity factors,  and

, respectively.

 

24

 

  In the present paper, only the total
stress intensity factor  is considered.  The stress
intensity factor  is related through a bulging factor to
the stress intensity factor for the reference problem of a
flat plate with a central crack subjected to uniaxial ten-
sion perpendicular to the crack direction.  The bulging
factor,  is defined as the ratio of the stress intensity
factor  in a shell with a crack, to the stress intensity
factor  in a flat plate of the same material, thickness,
crack length, and in-plane remote stress, , acting per-
pendicular to the crack line:

(7)

In the present study, the bulging factor for a cylindrical
shell with a longitudinal crack or a circumferential crack
is denoted as 

 

β

 

L

 

 and 

 

β

 

C

 

, respectively.

Shell Geometry and Analysis Procedure

Shell Model

The geometry of a typical shell analyzed in the
present study is defined in Fig. 1.  The shell shown in
Fig. 1 is a segment of an infinitely long cylindrical shell,
with an infinite number of equal length longitudinal or
circumferential cracks evenly distributed along the
length of the shell to maintain the symmetry of the mod-
els.  The shell is made of 2024-T3 aluminum alloy and
has a radius,  an axial length,  a circumferential
length,  a wall thickness,  and a crack length, 
The crack is centrally located and is oriented longitudi-
nally (parallel to the x-axis) or circumferentially (parallel
to the y-axis).  The Young’s modulus, 

 

E

 

, for the alumi-
num alloy is equal to 10.35 msi and Poisson’s ratio, 

 

v

 

, is
equal to 0.3.  The loading condition for the shell consists
of an applied internal pressure, 

 

p

 

, which generates a cir-
cumferential stress reaction, 

 

σ

 

y

 

, and an axial stress, 

 

σ

 

x

 

,
which is the sum of the stress from a bulkhead pressure
load, 

 

σ

 

xp

 

, and an applied mechanical load, 

 

σ

 

xm

 

.  Seven
values of the biaxial loading parameter are considered:

 0.25, 0.5, 1.0, 1.5, 3.0, and 6.0.  A biax-
ial loading parameter  corresponds to the internal
pressure only loading condition. 
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Typical finite element models used to simulate the
response of the cracked shells are shown in Fig. 2, for
shells with two different crack orientations.  Quarter
symmetry was assumed, so only the shaded portion of
the shell segment shown in Fig. 1 was modeled.  To sim-
plify model generation for the wide range of parameters
considered, the model dimensions in the  and  direc-
tions, and the element dimensions were scaled by the

crack length.  This approach was used to reduce the ef-
fort required to model shells with different crack lengths,
while maintaining reasonable consistency in the solution
resolution in going from a mesh for a short crack to a
mesh for a long crack.  The dimensions of the models in
the  and  directions were set equal to 24a and 6a, re-
spectively.  These dimensions were chosen to reduce fi-
nite width and finite length effects to an acceptable level;
that is, changing the edge conditions resulted in less than
a 5% change in the computed stress intensity factor.  The
longer dimension in the longitudinal direction was re-
quired to minimize edge effects for the cylindrical shell
with a circumferential crack.

The shells were modeled using STAGS standard
410 quadrilateral shell elements, and 510 and 710 mesh-
transition elements, where needed.  The elements are flat
facet-type elements and are based on Kirchoff-Love
shell theory and the nonlinear Lagrangian strain ten-
sor.19,25  Each of the shell element nodes has six degrees
of freedom, including three translational degrees of free-
dom, u, v, and w, and three rotational degrees of freedom,

 and  about the axes x, y, and z, respectively
(see Fig. 1).  Symmetry boundary conditions were pre-
scribed on the left (x = 0) and bottom (y = 0) edges of the
model.  Periodic boundary conditions were prescribed to
approximate the physical boundary conditions on the top

p

σy

σx

σy

σx

La

Lc

t
y

2a

x

Figure 1.  Shell Geometry.

R

(a) Model for R = 80 in., a = 14.7 in., longitudinal crack

(b) Model for R = 80 in., a = 14.7 in., circumferential crack

sym.

sym.

crackx

y

sym.

sym.

crack

x

y

Figure 2.  Typical finite element models.

x y

x y

ru, rv, rw
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(y = 6a/R) and right edges (x = 24a) of the model.  The
right edge of the model was also constrained to remain
cylindrical throughout the loading process.   Specifically,
on the top edge of the model, the circumferential degree
of freedom, , and the rotational degrees of freedom,

 and  were set equal to zero; and on the right
edge of the model, the axial and radial degrees of free-
dom,  and  respectively, were constrained to be
uniform, and the rotational degrees of freedom,  and

 were set equal to zero.  A symmetric crack with
only one side of the crack modeled was defined along the
bottom edge (longitudinal crack) or left edge (circumfer-
ential crack) of the model.  The crack has a half crack
length equal to  and starts in the lower left corner of the
model and extends to the right (longitudinal crack), or up
(circumferential crack), as shown in Fig. 2.  A fine mesh
was required to represent the stress and deformation gra-
dients near the crack tip.  To eliminate the dependence of
the results on mesh resolution, several analyses were
conducted, with increasing mesh refinement in the crack-
tip region, until further refinement produced less than
1% change in the total stress intensity factor, .  The
analyses converged using elements near the crack tip
with edge lengths equal to   Predictions of the
flat-plate stress intensity factor using the converged
mesh were within 1% of the predictions obtained using
Eq. (4), with Irwin’s finite width adjustment.22  The
loading on the shell consisted of two parts.  Internal pres-
sure was simulated by applying a uniform lateral pres-
sure to the shell wall and an axial tensile force to account
for bulkhead pressure loads to the right edge of the shell,

 with multi-point constraints to enforce a
uniform edge displacement.  The ‘internal pressure only’
load case is then represented by a biaxial loading param-
eter,   The internal pressure plus mechanical
load cases,  were simulated by applying an ad-
ditional axial force to the right edge of the model. 

Nonlinear Analysis Procedure

The shell responses were predicted numerically us-
ing the STAGS (STructural Analysis of General Shells)
nonlinear shell analysis code.19  STAGS is a finite ele-
ment code for general-purpose analysis of shells of arbi-
trary shape and complexity.  STAGS analysis
capabilities include stress, stability, vibration and tran-
sient response analyses, with both material and geomet-
ric nonlinearities represented.  The code uses both the
modified and full Newton methods for its nonlinear solu-
tion algorithms, and accounts for large rotations in a shell
by using a co-rotational algorithm at the element level.
The Riks pseudo arc-length path following method26,27

is used to continue a solution past limit points in a non-
linear response.  The strain-energy release rate is calcu-

lated in STAGS, from a nonlinear equilibrium state,
using the modified crack closure integral technique.28

Results and Discussion

The geometrically nonlinear analysis results for un-
stiffened cylindrical shells with a longitudinal or circum-
ferential crack are presented in this section.  This section
is separated into three parts.  Each part corresponds to a
phase in the nonlinear analysis approach that was used to
assess the applicability of the nondimensional parame-
ters λ, η and χ, for characterizing the nonlinear response
of a shell with a crack, and to study the effect of these pa-
rameters on the nonlinear shell response.  In the first part,
the accuracy of the analysis model and the analysis pro-
cedure is assessed by comparing the STAGS linear pre-
dictions for the bulging factor with solutions in the
literature that are based on linear shallow shell theory.
The linear analyses were performed for 30 shells with a
radius equal to 80 in., a shell wall thickness equal to
0.040 in., and half-crack lengths ranging from 0.49 in. to
14.76 in.  In the second part, results of the analyses con-
ducted for the specific shell configurations shown subse-
quently in Table 1 are presented to confirm the
applicability of the nondimensional parameters λ, η and
χ, for characterizing the nonlinear response of shells
with longitudinal and circumferential cracks.  The shell
configurations shown in Table 1 represent a variation of
the shell curvature parameter of   The
third part presents results of a series of nonlinear analy-
ses that were conducted to determine the bulging factors
for a large range of the nondimensional parameters.
Simple empirical expressions for the bulging factor are
then derived from the numerical results and shown to
predict accurately the nonlinear response of shells with
longitudinal and circumferential cracks.  In all of the
analyses, the loading condition for the shell consisted of
an applied internal pressure, p, which generates a cir-
cumferential stress reaction,  and an axial stress, 
giving a biaxial loading parameter 0.0,
0.25, 0.50, 1.0, 1.5, 3.0, or 6.0.  The ‘pressure only’ case
is given by   Internal pressure was varied such
that  where in the present study the pressure
loading parameter, η, is defined as:

(8)

where   All computations were performed
using  msi and 

Linear Bulging Factors for Shells with Longitudinal and 
Circumferential Cracks 

In a linear analysis, the bulging factor depends only
on the shell curvature parameter, λ.  The linear bulging
factors as a function of λ, computed using a linear

v
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rw,

a
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STAGS analysis, are compared in Fig. 3 with bulging
factors computed from numerical solutions that are
based on linear shallow shell theory.  The linear bulging
factors for a shell with a longitudinal crack,  and for
a shell with a circumferential crack,  are shown in
Figs. 3a and 3b, respectively.  The numerical solutions
from the literature are available for values of  λ less than
8 for the case of a longitudinal crack,6 and for values of
λ less than 10 for the case of a circumferential crack.7

The predictions shown in Fig. 3 were obtained using a
configuration with a radius, R = 80 in., thickness, t =
0.040 in., and with the half-crack length, a, varied to pro-
vide the range of  λ values shown.  The agreement be-
tween the geometrically linear finite element predictions,
shown by the symbols, and the numerical solutions pre-
sented in Refs. 6 and 7, shown by the solid lines, is ex-
cellent, indicating that the mesh refinement near the
crack tip, and that the shell dimensions chosen for the
models, are adequate.

Assessment of λ, η and χ as Governing Parameters for 
the Nonlinear Response of Shells with Longitudinal and 
Circumferential Cracks 

 Following Budiman and Lagace,16 the second step
in the analysis was to confirm the applicability of the
shell curvature parameter, λ, the pressure loading param-
eter, η, and the biaxial loading parameter, χ, for charac-
terizing the nonlinear response of cylindrical shells with
both longitudinal and circumferential cracks subjected to
internal pressure and mechanical loads.  Cylindrical shell

configurations considered in this phase of the analysis
are provided in Table 1.  As shown in Table 1, sixteen
different cylindrical shell configurations with values of
λ equal to 2.875, 5.75, 8.625, and 11.50 were considered.
For each value of  λ and χ, nonlinear analyses were per-
formed for two values of the shell radius, and shell wall
thickness, with the half-crack length adjusted according-
ly.  The larger radius, R = 80 in., is representative of a
narrow-body transport fuselage geometry, and the small-
er radius, R = 20 in., is representative of a relatively large
laboratory scale specimen.

Previous results presented by Budiman and
Lagace16 and Young et. al20 confirmed that the nondi-
mensional parameters λ and η can be used to character-
ize the bulging response of cylindrical shells with
longitudinal and circumferential cracks subjected to in-
ternal pressure and the associated bulkhead loads (χ =
0.5) by showing that for different cylindrical shell con-
figurations with cracks the nonlinear bulging factor re-
sponse collapses to a single curve for a constant value of
λ, when plotted as a function of η.  Similar results were
obtained in the present analysis, for shells with longitu-
dinal and circumferential cracks, for all values of the bi-
axial loading parameter that were considered.

Representative nonlinear analysis results for the
bulging factor of a shell with a longitudinal crack,  of
the configurations outlined in Table 1 with values of  λ
equal to 2.875 and 11.50 are shown in Figs. 4a and 4b,
respectively, as a function of the pressure loading param-
eter, η, and the biaxial loading parameter, χ.  Curves are

βl in
L ,

βl in
C ,

βL,

(b) Linear bulging factor for a

circumferential crack, βl in
C

(a) Linear bulging factor for a 

longitudinal crack, βl in
L

0.5

1

1.5

2

2.5

0 5 10 15

βlin
C

λ
0

2

4

6

8

0 5 10 15

βlin
L

λ

STAGS
Ref. 6

STAGS
Ref. 7

Figure 3.  Linear bulging factors versus λ, predicted using STAGS and the numerical solution of 
Erdogan and Kibler6 (longitudinal crack) and Erdogan and Ratwani7 (circumferential crack).
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shown for values of χ = 0.0, 0.5, 1.5, and 6.0.  For each
value of  λ in Table 1, there are four cylindrical shell con-
figurations.  The results in Fig. 4 show that when the
nonlinear bulging factors are presented as a function of η
and χ, the response for the different shells with equal val-
ues of  λ collapses to a single curve for each value of the
biaxial loading parameter.  That is, each curve in Fig. 4,
labeled with a constant value of χ, corresponds to the
bulging factor predictions for four different shell config-
urations.  Similar results are obtained for the shell con-
figurations in Table 1 with values of  λ equal to 5.75 and
8.625.  Therefore, the results of the analyses confirm the
use of the parameters  λ, η and χ to characterize the non-
linear response of shells with longitudinal cracks and
subjected to internal pressure and axial loads.  Further-
more, the results in Fig. 4 show that the bulging factor re-
sponse is a nonlinear function of the pressure loading
parameter, η, for all values of the biaxial loading param-
eter, χ, and the shell curvature parameter, λ.  For small
values of η (η<<1) the local shell response is predomi-
nantly a linear bending response, and the bulging factors

from the nonlinear analysis are independent of the pres-
sure loading parameter, η, and the biaxial loading param-
eter, χ, and therefore, depend only on  λ.  The linear
response is indicated by the flat regions of the curves for
values of η near zero in Fig. 4.  For larger values of η, the
response transitions from a linear bending dominated re-
sponse to a nonlinear response, where the bulging factor
is dependent on the pressure loading parameter, η.  The
rate at which the response transitions from linear to non-
linear, and the nature of the initial nonlinear response is
dependent upon both the biaxial loading parameter, χ,
and the shell curvature parameter, λ.  

When a shell with a longitudinal crack is initially
loaded by internal pressure, compressive axial mem-
brane stresses develop along the edges of the crack,
much like the compressive stresses that develop in re-
gions near the edge of the crack in a center-cracked flat
plate subjected to a tension load.  Remote axial stresses
applied to the shell influence the local axial membrane
stresses along the edge of the crack and the bulging de-
formations.  When the biaxial loading parameter, χ, is

Table 1.  Configurations considered to confirm the applicability of nondimensional parameters, λ and η

λ = 2.875 λ = 5.75 λ = 8.625 λ = 11.50

R=20 in. t=0.02 in. a = 1 in. a = 2 in. a = 3 in. a = 4 in.

t=0.08 in. a = 2 in. a = 4 in. a = 6 in. a = 8 in.

R=80 in. t=0.02 in. a = 2 in. a = 4 in. a = 6 in. a = 8 in.

t=0.08 in. a = 4 in. a = 8in. a = 12 in. a = 16 in.

0 1 2 3
1

2

3

4

5

6

7

0 1 2 3
1.0

1.5

2.0

2.5

Figure 4.  Dependence of the bulging factor for a longitudinal crack, βL, on the pressure loading parameter, η, 
and the biaxial loading parameter, χ, for two values of the shell curvature parameter, λ.
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Figure 5.  Dependence of the bulging factor for a circumferential crack, βC, on the pressure loading parameter, 
η, and the biaxial loading parameter, χ, for two values of the shell curvature parameter, λ.
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equal to zero, the remote axial stress is zero, and the axial
membrane stresses along the edge of the crack are com-
pressive when η is small.  As η is increased, the linear
bending deformations become sufficiently large for the
axial compressive stresses along the crack to couple with
the out-of-plane bending deformations, causing a desta-
bilizing effect, and the bulging factor initially increases
with increasing η.  As η is increased further, the bulging
deformations become large enough for tensile axial
membrane stresses to develop along the crack edges.
These tensile stresses increase the resistance to addition-
al crack bulging and crack opening, and the bulging fac-
tor decreases with increasing values of η.  For larger
values of χ, (χ = 0.5, 1.5, 6.0 in Fig. 4) the local shell re-
sponse is predominantly a nonlinear membrane dominat-
ed response, where the bulging factor decreases with
increasing pressure, from the initiation of pressure load-
ing.  As χ is increased, the axial membrane stresses along
the edge of the crack become tensile at increasingly
smaller values of the pressure loading parameter, η.  As
described previously, these tensile stresses suppress the
bulging deformations and the bulging factors are smaller
for larger values of χ.  For configurations with large val-
ues of λ (longer crack lengths), the response is more non-
linear than for shells with small values of λ (shorter crack
lengths) as indicated by the steeper slopes of the curves
for  in Fig. 4b as compared to the slope of the
curves for  in Fig. 4a.

The applicability of the shell curvature parameter,
λ, and the loading parameters η and χ, for characterizing
the nonlinear response of circumferentially crack cylin-
drical shells subjected to internal pressure and axial loads

is also assessed.  Nonlinear analyses were conducted for
the same shell configurations as for the longitudinal
crack (Table 1), and for values of the biaxial loading pa-
rameter equal to 0.25, 0.50, 1.0, 1.5, 3.0, and 6.0.  A bi-
axial loading parameter equal to zero was not considered
for the cylinders with circumferential cracks, since this
corresponds to the case of zero axial load and no stress
intensity at the crack tip. 

Results of the nonlinear analyses for configurations
with λ equal to 2.875 and 11.50, and values of the biaxial
loading parameter  χ = 0.25, 0.50, 1.5, and 6.0 are sum-
marized in Fig. 5.  For very small values of η, the nonlin-
ear bulging factor results are equal to the linear bulging
factor.  The results in Figs. 5a and 5b for λ equal to 2.875
and 11.50, respectively, show that when the nonlinear
bulging factors for circumferential cracks,  are pre-
sented as a function of η, for each value of χ, the re-
sponses for four different shells with the same value of λ
nominally collapse to a single curve.  The bulging factor
predictions for the second configuration in Table 1, R =
20 in., and = 0.08 in., ( = 250) are slightly higher than
the predictions for the other configurations because of
mesh transition effects that are dependent on R/t.  The re-
sults in Fig. 5 also show that the bulging factors for cir-
cumferential cracks are only mildly dependent on the
biaxial loading parameter, and the maximum percentage
difference between the bulging factor predictions for
χ = 0.25 compared to the predictions for  χ = 6.0 is 10%.
Similar results are obtained for shell configurations with
values of λ equal to 5.75 and 8.625.  Therefore, the re-
sults of the analyses suggest that only the parameters  λ
and η are required to characterize the nonlinear response

λ 11.50=
λ 2.875=

βC,

R t⁄
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of shells with circumferential cracks and subjected to in-
ternal pressure and axial loads.   Furthermore, for a given
shell and crack length (given λ), geometric nonlinearities
affect the bulging response, and become significant for
very small values of the loading parameter, η, as indicat-
ed by the immediate decline in the magnitude of the
bulging factor for values of .  For a given shell, the
longer the crack length (larger λ), the more nonlinear the
response, as indicated by the steeper slopes of the curves
for shells with λ = 11.50 compared to the curves for
shells with λ = 2.875.

Bulging Factors for a Large Range of the Nondimen-
sional Parameters

The results presented in the previous section show
that in an unstiffened cylindrical shell the bulging effect
for a circumferential crack can be characterized ade-
quately by the two nondimensional parameters, λ and η,
while the bulging effect for a longitudinal crack requires
three nondimensional parameters, λ, η and χ, to charac-
terize the response.  To develop expressions for bulging
factors for circumferential and longitudinal cracks in
terms of these nondimensional parameters, a series of
nonlinear analyses were conducted to determine the
bulging factors for a large range of the nondimensional
parameters.  The analyses were conducted using shell
configurations with R = 80.0 in., t = 0.04 in., and half-
crack lengths to provide values of  in incre-
ments of 0.5.  The internal pressure was varied such that

  For the circumferential crack, a single val-
ue of the biaxial loading parameter,  χ = 0.5, was consid-
ered.  For the longitudinal crack, values of the biaxial
loading parameter of  χ = 0.0, 0.25, 0.5, 1.0, 1.5, 3.0 and
6.0 were considered.  In the following figures, the bulg-
ing factor results from the analyses are plotted in terms
of the nondimensional parameters, and the trends in the
results are used to suggest functional forms which can
simulate the observed response.  Contour plots of the
bulging factor results for a specific value of χ are pre-
sented as a function of the shell curvature parameter, λ,
and the pressure loading parameter, η, to establish the
functional dependence on λ and η.  For the longitudinal
crack case, the variation of the functional dependence on
λ and η for different values of the biaxial loading ratio,
χ, is used to suggest the functional dependence on χ.  Re-
sults are presented first for the longitudinal crack, and
then for the circumferential crack. 

Longitudinal Crack.  The bulging factors from
STAGS analyses of cylindrical shells with longitudinal
cracks, βL, as a function of the shell curvature parameter,
λ, and the pressure loading parameter, η, are presented as
contour plots in Fig. 6.  Bulging factors for χ = 0.0, 0.5,
1.5, and 6.0, are shown in Figs. 6a, 6b, 6c, and 6d, re-
spectively.  The solid lines in the figure are contour lines,

or lines through points with a common value of the bulg-
ing factor.  There are some general trends indicated by
the contour plots.  For a given value of χ, the bulging fac-
tors monotonically increase with increasing values of λ,
and generally decrease with increasing values of η.  In
each contour plot, the bulging factor for very small val-
ues of η, i.e., for locations near the λ-axis, corresponds
to the linear bulging factor,  shown previously in
Fig. 3a, and does not vary with changes in χ.  For small
values of η, the contour lines are nearly perpendicular to
the λ-axis, indicating that the bulging factor for small
values of η is primarily a function of λ only and can be
approximated by   The unshaded areas of the con-
tour plots in Fig. 6 indicate the linear region of the re-
sponse where the difference between  and  is less
than 10%.  For higher values of η, the linear bending de-
formations become sufficiently large and cause nonlin-
ear membrane stiffening.  The bulging factors decrease
with increasing η, and the contour lines bend to the right
and asymptotically approach lines which extend radially
from the origin.  The shaded areas of the contour plots in
Fig. 6 indicate the nonlinear region of the response
where the difference between  and  is greater
than 10%.  The largest differences between  and 
occur when λ and η are both large, where  overpre-
dicts  by 45% when χ = 0, and by 400% when χ = 6.
Comparison of the contour plots for different values of χ
indicates that increasing the biaxial loading parameter
promotes tensile membrane behavior, causing the con-
tour lines to bend to the right at lower values of η, thus
reducing the size of the linear response region.  A simple
expression for representing the bulging factor behavior
shown in Fig. 6, that can be easily used in a design envi-
ronment, is obtained by characterizing the linear and
nonlinear regions of the response separately.   

The linear region of the response is accurately de-
scribed by the linear bulging factor for a longitudinal
crack,  shown previously in Fig. 3a.  A simple ex-
pression for the linear bulging factor is obtained by ex-
amining the behavior of the numerical data and
determining that the data can be approximated closely by
the function

(9)

An expression for estimating the bulging factor in
the nonlinear region of the response,  is obtained by
utilizing the fact that the contour lines of the bulging fac-
tor asymptotically approach radial lines through the ori-
gin.  For a given value of χ, the value of the bulging
factor can be uniquely related to the slope of the radial
line, i.e., λ/η , which is approached asymptotically by a
contour line.  To obtain an expression which relates the
nonlinear bulging factor to the ratio λ/η  and the biaxial
loading ratio, χ, the relationship between the nonlinear
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bulging factor and the ratio λ/η  is first established for
each value of χ.  Then, the variation in this relationship
is described as a function of χ.  

The contour plots of the bulging factor in Fig. 6,
and similar contour plots for χ = 0.25, 1.0, and 3.0, are
used to establish the relationship between the nonlinear
bulging factor and the ratio λ/η.   Along the top and right
sides of each contour plot, the values of the nonlinear
bulging factors and the corresponding λ and η values are
extracted.  The nonlinear bulging factors are plotted for
each value of χ as a function of λ/η  in Fig. 7.  Each curve
in Fig. 7 is then fitted to a curve to obtain an expression

for  as a function of  λ/η.  Through an iterative pro-
cess, it was determined that the curves in Fig. 7 can be
closely approximated by functions of the form

(10)

where the coefficients  and  are determined
by curve fitting the results for each value of χ.  The coef-
ficients that were obtained from the curve fits of the
results in Fig. 7 are given in Table 2. 

βnl
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Figure 6.  Contour plot of the bulging factor for a longitudinal crack, βL, from STAGS analyses, and the linear 
(unshaded) region of the bulging factor response, as a function of the shell curvature parameter, λ, and 
the pressure loading parameter, η, for several values of the biaxial loading parameter, χ.
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The values of the coefficients  and  are
plotted as a function of χ in Fig. 8.  In Fig. 8, the solid
symbols and the ordinate axis on the left side of the fig-
ure reflect the values of the coefficient , and the
open symbols and the ordinate axis on the right side of
the figure reflect the values of the coefficient .
Through an iterative process, it was determined that the
data points in Fig. 8 can be closely approximated by the
following functions:

(11)

which is shown in Fig. 8 as a solid line, and

(12)

which is shown in Fig. 8 as a dashed line.  The functions
in Eqs. (11) and (12) closely approximate the data in
Fig. 8 except for the data for χ = 0.  At relatively large

values of the pressure loading parameter, η, the local
shell response for the case where χ = 0 is different from
the local shell response for cases where the biaxial load-
ing parameter is greater than zero.  In the χ = 0 case,
axial compressive membrane stresses develop adjacent
to the crack to equilibrate the axial tensile membrane
stresses that develop along the crack edge when the
crack bulges.  These compressive stresses eventually
become large enough to cause the shell to wrinkle near
the crack, as shown in Fig. 9.  After wrinkling, the value
of the bulging factor is not uniquely related to the slope
of the radial line, λ/η .  This behavior is demonstrated in
Fig. 6a by the divergence of the contour lines from
radial lines at large values of η.  For larger values of χ,
the compressive stresses near the crack never get large
enough to wrinkle the shell, and the value of the bulging
factor is uniquely related to the slope of the radial line,
λ/η , throughout the nonlinear region of the response. 

Table 2.  Coefficients in Eq. (10) for
curve fits of results in Fig. 7 

χ   

0.00 2.24 0.85

0.25 1.60 0.94

0.50 1.32 0.98

1.0 0.92 1.05

1.5 0.67 1.12

3.0 0.33 1.27

6.0 0.16 1.36
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Figure 7.  Nonlinear bulging factor for a longitudinal 

crack,  for χ = 0.0, 0.25, 0.5, 1.0, 1.5, 

3.0, and 6.0, as a function of the ratio λ/η.
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By using Eqs. (11) and (12) with Eq. (10), the non-
linear bulging factor for a longitudinal crack in a cylin-
drical shell,  is expressed in terms of the shell
curvature parameter, the pressure loading parameter, and
the biaxial loading parameter.  The expression for  in
Eq. (10) will overpredict the bulging factor in the linear
region of the response, while the expression for  in
Eq. (9) will overpredict the bulging factor in the nonlin-
ear region of the response.  The bulging factor over the
entire linear and nonlinear regions of the response, for
any value of λ, η and χ, is approximated by taking the
minimum of the linear bulging factor estimated by
Eq. (9), and the nonlinear bulging factor, estimated by
Eq. (10).

 = min( , ) (13)

The accuracy of Eq. (13) in representing the bulg-
ing factors from the STAGS analyses is demonstrated by
the contour plots of the bulging factors for χ = 0.0 and
6.0 shown in Figs. 10a and 10b, respectively.  In Fig. 10,
the bulging factors from the STAGS analyses are shown
as solid lines, and the estimates from Eq. (13) are shown
as dashed lines.  The largest discrepancies between
Eq. (13) and the STAGS analyses occur in the transition
region between the linear and the nonlinear regions of
the response.  For χ = 0, the discrepancies are less than
10% over the entire area.  For χ = 6, the shaded area in
the contour plot indicates the region where the discrep-
ancies are greater than 10%.  The shaded area is small,
and the worst case situation for Eq. (13) overpredicts the
bulging factor by 22%.   

Circumferential Crack.  It was demonstrated previ-
ously that the bulging factor for cylindrical shells with
circumferential cracks, βC, has a mild dependence on the
biaxial loading parameter.  The bulging factors for χ =
0.5 are a good estimate for , and the largest
discrepancies are conservative.  Thus, the circumferen-
tial bulging factor will be characterized for χ = 0.5.  The
bulging factor results from the STAGS analyses of cylin-
drical shells with circumferential cracks, βC, are present-
ed as a function of the shell curvature parameter, λ, and
the pressure loading parameter, η, in Fig. 11.  The solid
lines in the figure are contour lines, or lines through
points with a common value of the bulging factor.  The
results in the contour plot indicate that the bulging fac-
tors monotonically increase with increasing values of λ,
and monotonically decrease with increasing values of η.
This behavior is consistent with the results shown in
Fig. 5.  The contour plot of the bulging factors for the cir-
cumferential crack with χ = 0.5 in Fig. 11 is similar to the
contour plot of the bulging factors for the longitudinal
crack with χ = 0.5 shown previously in Fig. 6(b).  The
primary differences between the bulging factor contour
plots for the two crack orientations are that the bulging
factor for the circumferential crack is smaller in ampli-
tude, and the contour lines are concentrated nearer to the
abscissa of the plot.  The bulging factor for very small
values of η, i.e., for locations near the λ-axis, is exactly
the linear response shown previously in Fig. 3b.  The
contour lines are perpendicular to the λ-axis for very
small loads, but the contours bend to the right almost im-
mediately as η is increased, and asymptotically approach
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Figure 10.  Contour plot showing the bulging factors for a longitudinal crack, βL, as computed using STAGS 
and approximated by Eq. (13), as a function of the shell curvature parameter, λ, and the loading 
parameter, η.
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lines which extend radially from the origin.  The shaded
area of the contour plot in Fig. 11 signifies the nonlinear
region of the response where the difference between 
and  is greater than10%.  This shaded region is clos-
er to the λ-axis than it was for the longitudinal crack with
χ = 0.5, indicating that the transition from the linear
bending response to the nonlinear membrane response
occurs at smaller values of load for a shell with a circum-
ferential crack than for a shell with a longitudinal crack.
The largest differences between  and  occur
when λ and η are both large, which results in  over-
predicting  by 100%.

A simple expression, that can be easily used in a de-
sign environment, for representing the bulging factor be-
havior shown in Fig. 11 is obtained by characterizing the
linear and nonlinear regions of the response separately.
The linear bulging factor for a circumferential crack,

, shown previously in Fig. 3b, is expressed as a
function of λ by applying a polynomial curve fit to the
numerical data, which gives 

(14)

An expression for estimating the bulging factor in
the nonlinear region of the response,  is obtained by
utilizing the fact that the contour lines of the bulging fac-
tor asymptotically approach radial lines through the ori-
gin, and the value of the bulging factor can be uniquely
related to the slope of the radial line, i.e., λ/η , which is

approached by the contour line asymptotically.  The non-
linear bulging factors from the top (η=3) and right
(λ=15) sides of Fig. 11 are plotted as function of λ/η  in
Fig. 12, and then expressed as a function of λ/η  by apply-
ing a polynomial curve fit to the numerical data, which
gives

   (15)

 The expression for  in Eq. (15) will overpredict
the bulging factor in the linear region of the response,
while the expression for  in Eq. (14) will overpredict
the bulging factor in the nonlinear region of the response.
The bulging factor over the entire linear and nonlinear
regions of the response, for any value of λ, η and χ, is ap-
proximated by taking the minimum of the linear bulging
factor estimated by Eq. (14), and the nonlinear bulging
factor, estimated by Eq. (15).

 = min( , ) (16)

The bulging factors obtained by applying Eq. (16) are
compared to the bulging factors from the STAGS analy-
ses in Fig. 13.  The bulging factors from the STAGS
analyses are shown in Fig. 13 as solid lines, and the esti-
mates from Eq. (16) are shown as dashed lines.  The
largest discrepancies between Eq. (16) and the STAGS
analyses occur in the transition region between the lin-
ear and the nonlinear regions of the response.  The worst
case situation for Eq. (16) overpredicts the bulging fac-
tor by 9%.  
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Concluding Remarks

The results of a geometrically nonlinear parametric
study to determine the effects of shell geometry, and the
magnitudes of internal pressure and axial loading on the
stress intensity factors at the tips of longitudinal and cir-
cumferential cracks in thin unstiffened shells have been
presented.  The results are normalized by the stress inten-
sity factor for flat plates, and presented in terms of the so-
called crack “bulging factor” commonly used in design
to represent the effects of shell curvature on the stress in-
tensity factor.  The results of the study are presented in
terms of three nondimensional parameters: the shell cur-
vature parameter, λ, which depends on the specific shell
geometry; the loading parameter, η, which depends on
the magnitude of the applied internal pressure, the shell
radius, and the material stiffness; and the biaxial loading
parameter, χ, which is the ratio of the farfield axial stress
to the farfield circumferential stress.  The shell curvature
parameter and loading parameter were suggested by Bu-
diman and Lagace to be the nondimensional parameters
for characterizing the nonlinear response of longitudinal-
ly and circumferentially cracked cylindrical shells sub-
jected to internal pressure loading. 

The nonlinear finite element results of the present
study showed that λ, η, and χ can be used to characterize
the nonlinear response of cylindrical shells with longitu-
dinal cracks and subjected to combined internal pressure
and axial loads.  Furthermore, the results of the present
study indicate that the geometrically nonlinear response

of a cylindrical shell with a circumferential crack and
subjected to combined internal pressure and axial loads
is only mildly dependent on the biaxial loading parame-
ter, and thus, can be adequately characterized by the two
nondimensional parameters, λ and η.  The results also
show that the magnitude of the bulging factor is affected
by the shell geometry and the shell loading condition,
and, that for many shell geometries and load magnitudes,
the bulging factor is strongly influenced by the geomet-
rically nonlinear response of a pressurized thin shell.
The local response of the shell in the neighborhood of the
crack is dominated by linear bending or nonlinear mem-
brane response characteristics, depending on the values
of the shell radius, the shell thickness, the crack length,
and the magnitudes of the applied internal pressure and
axial loads.  When the response is dominated by linear
bending behavior, the bulging factor response is inde-
pendent of the loading parameters, and is adequately
characterized by expressions that depend only on the
shell curvature parameter, λ.  When the response is dom-
inated by nonlinear membrane behavior, the linear bulg-
ing factors give extremely conservative predictions of
the bulging response.  For shells with longitudinal
cracks, increasing the biaxial loading parameter pro-
motes the development of nonlinear membrane behavior
near the crack, but decreasing the biaxial loading param-
eter delays the development of nonlinear membrane be-
havior and extends the region of the response which is
dominated by linear bending.  Simple empirical expres-
sions for the bulging factor are derived from the numeri-
cal results and are shown to predict accurately the linear
and nonlinear response of shells with longitudinal and
circumferential cracks.
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